Advanced Math

2-7
(Day 2)
Slant Asymptotes
slant asymptotes: Given the rational function $f(x)=\frac{p(x)}{q(x)}$
a: if degree of $q(x)$ is one less than the degree of $p(x)$, there is a slant asymptote.

To find it, take $g (x) \longdiv { p (x) }$ and ignore the remainder.

Sketch the graph of the rational function. As sketching aids, use zeros, yintercepts, asymptotes, and symmetry.
73) $f(x)=\frac{x^{3}}{x^{2}-1}$
domain: R except $\{ \pm 1\}$
vert: $x= \pm 1 \begin{aligned} & \text { Look for zero on the b } \\ & \text { Check for holes (factors). }\end{aligned}$
horiz: none
slant:

$m=1$
$b=(0,0)$
Ignore remainder
for slant asymptotes.
y-int: $(0,0)$

zeros: \{0\}

$$
\begin{array}{c|c|l}
& \begin{array}{ll}
x & y \\
-2 & \frac{-8}{3} \\
2 & \frac{8}{3}
\end{array} & -\frac{1}{2} \\
& -\frac{1 / 8}{-\frac{3}{4}}=-1 / 6
\end{array}
$$

Sketch the graph of the rational function. As sketching aids, use zeros, yintercepts, asymptotes, and symmetry.
*) $f(x)=\frac{x^{2}+x-6}{x^{2}+5 x+6}=\frac{(x+3)(x}{(x+3)(x+2}$
domain: \mathbb{R} except $\{-3,-2\}$
they cant be part of the domain.
vert: $x=-2$
hole at $x=-3$
horiz: $y=1$
y-int: $(0,-1)$
Zeros: $\{2\}$
It is a hole because the
factors reduce.

Assignment

pg. 280

50-54 even,
70-74 even,
H1) $H(x)=\frac{x^{2}-x-12}{x^{2}+x-20}$
H2) $R(x)=\frac{x^{3}+2 x^{2}-5 x-6}{x^{2}-4}$

